Skip to main content

Institutsbibliothek für Mathematik und Informatik

Problem solving with C++

Obrazy
Autor
Walter Savitch
Place of publication
Boston

Publisher

Publication date
2007
Table of Contents

Chapter 1 Introduction to Computers and C++ Programming . . 1
Chapter 2 C++ Basics . . 39
Chapter 3 More Flow of Control . . 109
Chapter 4 Procedural Abstraction and Functions That Return a Value . . 179
Chapter 5 Functions for All Subtasks . . 247
Chapter 6 I/O Streams as an Introduction to Objects and Classes . . 299
Chapter 7 Arrays . . 377
Chapter 8 Strings and Vectors . . 447
Chapter 9 Pointers and Dynamic Arrays . . 499
Chapter 10 Defining Classes . . 527
Chapter 11 Friends and Overloaded Operators . . 595
Chapter 12 Separate Compilation and Namespaces . . 681
Chapter 13 Pointers and Linked Lists . . 717
Chapter 14 Recursion . . 763
Chapter 15 Inheritance . . 805
Chapter 16 Exception Handling . . 859
Chapter 17 Templates . . 891
Chapter 18 Standard Template Library . . 921

Appendices
1 C++ Keywords . . 975
2 Precedence of Operators . . 976
3 The ASCII Character Set . . 978
4 Some Library Functions . . 979
6 Overloading the Array Index Square Brackets . . 988
7 The this Pointer . . 990
8 Overloading Operators as Member operators . . 993

Index . . 921

The interface between convex geometry and harmonic analysis

Obrazy
Autor
Alexander Koldobsky, Vladyslav Yaskin
Place of publication
Providence
Publication date
2008
Table of Contents

Preface . . ix
Chapter 1. Hyperplane sections of lp-balls . . 1
Chapter 2. Volume and the Fourier transform . . 9
Chapter 3. Intersection bodies . . 21
Chapter 4. The Busemann-Petty problem . . 39
Chapter 5. Projections and the Fourier transform . . 59
Chapter 6. Intersection bodies and Lp-spaces . . 67
Chapter 7. On the road between polar projection bodies and intersection bodies . . 75
Chapter 8. Open problems . . 87
Bibliography . . 101
Index . . 107

Series
(CBMS Regional Conference Series in Mathematics ; No 108)

Mathematics of quantum computation and quantum technology

Obrazy
Autor
ed. by Goong Chen, Louis Kauffman, Samuel J. Lomonaco
Place of publication
Boca Raton

Publisher

Publication date
2008
Table of Contents

Preface . . v

Quantum Computation . . 1
1 Quantum Hidden Subgroup Algorithms: An Algorithmic Toolkit . . 3
2 A Realization Scheme for Quantum Multi-Object Search . . 47
3 On Interpolating between Quantum and Classical Complexity Classes . . 67
4 Quantum Algorithms for Hamiltonian Simulation . . 89

Quantum Technology . . 113
5 New Mathematical Tools for Quantum Technology . . 115
6 The Probabilistic Nature of Quantum Mechanics . . 149
7 Superconducting Quantum Computing Devices . . 171
8 Nondeterministic Logic Gates in Optical Quantum Computing . . 223

Quantum Information . . 257
9 Exploiting Entanglement in Quantum Cryptographic Probes . . 259
10 Nonbinary Stabilizer Codes . . 287
11 Accessible information about quantum states: An open optimization problem . . 309
12 Quantum Entanglement: Concepts and Criteria . . 349
13 Parametrizations of Positive Matrices With Applications . . 387

Quantum Topology, Categorical Algebra, and Logic . . 407
14 Quantum Computing and Quantum Topology . . 409
15 Temperley-Lieb Algebra: From Knot Theory to Logic and Computation via Quantum Mechanics . . 515
16 Quantum measurements without sums . . 559

Appendix Panel Report on the Forward Looking Discussion . . 597
Index . . 603

Series
(Chapman & Hall CRC Applied Mathematics and Nonlinear Science Series ; 14)

Introduction to precise numerical methods

Obrazy
Autor
Oliver Aberth
Place of publication
Amsterdam

Publisher

Publication date
2007
Table of Contents

Preface . . xi
Acknowledgments . . xiii
1 Introduction . . 1
2 Computer Arithmetics . . 9
3 Classification of Numerical Computation Problems . . 25
4 Real-Valued Functions . . 37
5 Computing Derivatives . . 41
6 Computing Integrals . . 57
7 Finding Where a Function f(x) is Zero . . 69
8 Finding Roots of Polynomials . . 79
9 Solving n Linear Equations in n Unknowns . . 97
10 Eigenvalue and Eigenvector Problems . . 109
11 Problems of Linear Programming . . 137
12 Finding Where Several Functions are Zero . . 159
13 Optimization Problems . . 181
14 Ordinary Differential Equations . . 191
15 Partial Differential Equations . . 217
16 Numerical Methods with Complex Functions . . 235
The Precise Numerical Methods Program PNM . . 248
Index . . 249

Multivariate Statistics : Exercises and Solutions

Obrazy
Autor
Wolfgang Härdle, Zdeněk Hlávka
Place of publication
New York

Publisher

Publication date
2007
Table of Contents

Symbols and Notation . . 1
Some Terminology . . 5

Part I Descriptive Techniques
1 Comparison of Batches . . 15

Part II Multivariate Random Variables
2 A Short Excursion into Matrix Algebra . . 33
3 Moving to Higher Dimensions . . 39
4 Multivariate Distributions . . 55
6 Theory of Estimation . . 99
7 Hypothesis Testing . . 111

Part III Multivariate Techniques
8 Decomposition of Data Matrices by Factors . . 147
9 Principal Component Analysis . . 163
10 Factor Analysis . . 185
11 Cluster Analysis . . 205
12 Discriminant Analysis . . 227
13 Correspondence Analysis . . 241
14 Canonical Correlation Analysis . . 263
15 Multidimensional Scaling . . 271
16 Conjoint Measurement Analysis . . 283
17 Applications in Finance . . 291
18 Highly Interactive, Computationally Intensive Techniques . . 301

A Data Sets . . 325
References . . 361
Index . . 363

Applied nonparametric statistical methods

Obrazy
Autor
Peter Sprent and Nigel C. Smeeton
Place of publication
Boca Raton

Publisher

Publication date
2007
Table of Contents

Preface . . ix
1 SOME BASIC CONCEPTS . . 1
2 FUNDAMENTALS OF NONPARAMETRIC METHODS . . 23
3 LOCATION INFERENCE FOR SINGLE SAMPLES . . 45
4 OTHER SINGLE-SAMPLE INFERENCES . . 83
5 METHODS FOR PAIRED SAMPLES . . 125
6 METHODS FOR TWO INDEPENDENT SAMPLES . . 151
7 BASIC TESTS FOR THREE OR MORE SAMPLES . . 195
8 ANALYSIS OF STRUCTURED DATA . . 227
9 ANALYSIS OF SURVIVAL DATA . . 261
10 CORRELATION AND CONCORDANCE . . 283
11 BIVARIATE LINEAR REGRESSION . . 321
12 CATEGORICAL DATA . . 347
13 ASSOCIATION IN CATEGORICAL DATA . . 389
14 ROBUST ESTIMATION . . 437
15 MODERN NONPARAMETRICS . . 469
Appendix 1 . . 503
Appendix 2 . . 505
References . . 511
Index . . 526

Series
(Texts in Statistical Science)

Models for Discrete Longitudinal Data

Obrazy
Autor
Geert Molenberghs, Geert Verbeke
Place of publication
New York

Publisher

Publication date
2005
Table of Contents

Preface . . VII
Acknowledgments . . IX

I Introductory Material . . 1
II Marginal Models . . 53
III Conditional Models . . 223
IV Subject-specific Models . . 255
V Case Studies and Extensions . . 307
VI Missing Data . . 479

References . . 637
Index . . 671

Series
(Springer Series in Statistics)

Fundamental networking in Java

Obrazy
Autor
Esmond Pitt
Place of publication
New York

Publisher

Publication date
2006
Table of Contents

Foreword . . XIII
Preface . . XV

Part I INTRODUCTION TO NETWORKING . . 1
CHAPTER 1 Introduction . . 3

Part II IP — INTERNET PROTOCOL . . 7
CHAPTER 2 Fundamentals of IP . . 9

Part III TCP — TRANSMISSION CONTROL PROTOCOL . . 17
CHAPTER 3 Fundamentals of TCP I . . 19
CHAPTER 4 Scalable I/O . . 73
CHAPTER 5 Scalablercp . . 117
CHAPTER 6 Firewalls . . 129
CHAPTER 7 Secure Sockets . . 135
CHAPTER 8 Scalable secure sockets . . 185

Part IV UDP — USER DATAGRAM PROTOCOL . . 215
CHAPTER 9 Unicast uDP . . 217
CHAPTER 10 Scalable uDP . . 26l
CHAPTER 11 MulticastuDP . . 269

Part V IN PRACTICE . . 297
CHAPTER 12 Server and client models . . 299
CHAPTER 13 Fallacies of networking . . 339

Part VI APPENDICES . . 347