Skip to main content

Quantum Phase Transitions in Cold Atoms and Low Temperature Solids

Obrazy
Autor
Kaden Richard, Alan Hazzard
Place of publication
New York

Publisher

Publication date
2011
Table of Contents

1 Introduction to Many-Body Physics in Utracold Atomic Gases . . 1
1.1 Motivation: Many-Body Physics . . 1
1.2 Motivation: General Atomic Physics . . 4
1.3 History and Introduction to Many-Body Physics in Cold Atomic Systems . . 5
1.4 Challenges and Outline of Thesis . . 7
References . . 9

2 Theoretical and Experimental Techniques Used to Explore Many-Body Physics in Cold Atoms, Especially Optical Lattices . . 11
2.1 Experimental Techniques . . 11
2.2 Theoretical Techniques . . 18
References . . 31

3 Radio-Frequency Spectroscopy: Broad Introduction . . 33
3.1 Motivation and Background . . 33
3.2 Two Differing Pictures of RF Spectroscopy . . 34
References . . 35

4 RF Spectra: A Sum Rule Approach to Trapped Bosons in an Optical Lattice . . 37
4.1 Chapter Overview . . 37
4.2 Introduction . . 37
4.3 Spectrum of Harmonically Trapped Gas . . 39
4.4 Refinements . . 46
4.5 Summary . . 49
References . . 50

5 RF Spectra: Multiple Peaked Spectrum in a Homogeneous System . . 51
5.1 Chapter Overview . . 51
5.2 Introduction . . 52
5.3 Bose-Hubbard Model . . 54
5.4 Random Phase Approximation . . 55
5.5 Conclusions and Discussion . . 61
References . . 62

6 Radio-Frequency Spectra at Finite Temperature, Fluctuation-Response Relations, and Proposed Applications . . 63
6.1 Chapter Overview . . 63
6.2 Introduction . . 63
6.3 RF Spectra Introduction . . 64
6.4 Finite Temperature Superfluid . . 65
6.5 Applications . . 67
6.6 Determining Density Profiles from RF Spectra . . 75
6.7 Conclusions . . 83
References . . 84

7 RF Spectra: Summary, Conclusions, and the Future . . 85
References . . 86

8 Rotation, Inducing Gauge Fields, and Exotic States of Matter in Cold Atoms . . 87
8.1 Physics of Rotating Particles/Particles in Gauge Fields . . 88
8.2 Rotation . . 92
8.3 Other Methods of Inducing Gauge Fields . . 93
8.4 On-Site Correlations . . 94
References . . 94

9 Stirring up Fractional Quantum Hall Puddles . . 97
9.1 Chapter Overview . . 97
9.2 Introduction . . 97
9.3 Summary . . 103
References . . 104

10 Incorporating Arbitrarily Strong On-Site Correlations into Lattice Models . . 105
10.1 Chapter Overview . . 106
10.2 Body . . 106
References . . 113

11 Quantitative Calculation of Parameters for a Model Sufficiently General to Capture all On-Site Correlations . . 115
11.1 Background . . 115
11.2 Introduction, Notation, and Set Up . . 115
11.3 Quantitative Estimates of the Hamiltonian Parameters with Quantum Monte Carlo . . 116
11.4 Solutions for Various Values of t(mn) and Em . . 118
11.5 Note on Temperature Dependence of Response Functions . . 129
Reference . . 129

12 Summary, Conclusions, and the Future of Induced Gauge Fields and Lattices with On-Site Correlations . . 131
References . . 131

13 Techniques to Measure Quantum Criticality in Cold Atoms . . 131
13.1 Introduction . . 133
13.2 Note and Summary . . 139
References . . 140

14 Quantum Criticality: More Detailed Information . . 143
14.1 Bose-Hubbard Model . . 143
14.2 Finite Temperature Gutzwiller Theory . . 144
14.3 Non-Universal Contributions . . 144
14.4 Time of Flight Expansion . . 145
14.5 Finite Density O(2) Model . . 146
14.6 Calculating Density Profiles of One-Dimensional Hardcore Bosons . . 147
14.7 Other Cold Atoms Systems Displaying Quantum Criticality . . 148
14.8 Precise Definition of Universality . . 148
14.9 Quantum Monte Carlo Parameters and Signal-to-Noise . . 150
14.10 Finite-Size Scaling . . 151
References . . 151

15 Systems Other than Cold Atoms . . 153

16 Film Mediated Interactions Alter Correlations and Spectral Shifts of Hydrogen Adsorbed on Helium Films . . 155
16.1 Chapter Overview . . 155
16.2 Results . . 156
References . . 162

17 Candidate Theories to Explain the Anomalous Spectroscopic Signttures of Atomic H in Molecular H2 Crystals . . 165
17.1 Introduction and Motivation . . 165
17.2 Experiments . . 166
17.3 Scenarios . . 168
17.4 Other Observations . . 175
17.5 Summary, Conclusions, and Consequences . . 176
References . . 177

18 Helium and Hydrogen (super?)Solids . . 179
18.1 Background . . 179
18.2 Chapter Overview . . 179
18.3 Introduction . . 180
18.4 Torsional Oscillator NCRI . . 181
18.5 Two Supersolid Features . . 181
18.6 Blocked Annulus Torsional Oscillators . . 182
18.7 Dissipation Peaks . . 182
18.8 H2 Experiments . . 183
18.9 Frequency Dependence . . 186
18.10 Thermodynamics: Specific Heat and Pressure . . 187
18.11 3He Doping . . 188
18.12 Anomalous Critical Velocity . . 191
18.13 DC Flow . . 191
18.14 Shear . . 191
18.15 Implications for Mechanism . . 192
18.16 Future Directions . . 192
18.17 Conclusions . . 193
References . . 193

Appendix A: Relating Scattering Amplitudes and T-Matrix . . 195
Appendix B: Ward Identities for the RF Spectrum for the Bose-Hubbard Model—Vertex Corrections, Symmetries, and Conservation Laws . . 197

Biographical Sketch . . 229
Curriculum Vitae . . 231

Series
(Springer Theses)